Spark算子:RDD行动Action操作–aggregate、fold、lookup;reduce/fold/aggregate区别

关键字:Spark算子、Spark函数、Spark RDD行动Action、aggregate、fold、lookup

aggregate

def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

aggregate用户聚合RDD中的元素,先使用seqOp将RDD中每个分区中的T类型元素聚合成U类型,再使用combOp将之前每个分区聚合后的U类型聚合成U类型,特别注意seqOp和combOp都会使用zeroValue的值,zeroValue的类型为U

var rdd1 = sc.makeRDD(1 to 10,2)
rdd1.mapPartitionsWithIndex{
(partIdx,iter) => {
var part_map = scala.collection.mutable.Map[String,List[Int]]()
while(iter.hasNext){
var part_name = "part_" + partIdx;
var elem = iter.next()
if(part_map.contains(part_name)) {
var elems = part_map(part_name)
elems ::= elem
part_map(part_name) = elems
} else {
part_map(part_name) = List[Int]{elem}
}
}
part_map.iterator

}
}.collect
res16: Array[(String, List[Int])] = Array((part_0,List(5, 4, 3, 2, 1)), (part_1,List(10, 9, 8, 7, 6)))

##第一个分区中包含5,4,3,2,1

##第二个分区中包含10,9,8,7,6

var rdd1 = sc.makeRDD(1 to 10,2)
rdd1.aggregate(1)(
                {(x : Int,y : Int) => x + y}, 
                {(a : Int,b : Int) => a + b}
                )
res0: Int = 58

结果为什么是58,看下面的计算过程:

##先在每个分区中迭代执行 (x : Int,y : Int) => x + y 并且使用zeroValue的值1

##即:part_0中 zeroValue+5+4+3+2+1 = 1+5+4+3+2+1 = 16

## part_1中 zeroValue+10+9+8+7+6 = 1+10+9+8+7+6 = 41

##再将两个分区的结果合并(a : Int,b : Int) => a + b ,并且使用zeroValue的值1

##即:zeroValue+part_0+part_1 = 1 + 16 + 41 = 58

再比如:

scala> rdd1.aggregate(2)(
| {(x : Int,y : Int) => x + y},
| {(a : Int,b : Int) => a * b}
| )
res18: Int = 1428

##这次zeroValue=2

##part_0中 zeroValue+5+4+3+2+1 = 2+5+4+3+2+1 = 17

##part_1中 zeroValue+10+9+8+7+6 = 2+10+9+8+7+6 = 42

##最后:zeroValue*part_0*part_1 = 2 * 17 * 42 = 1428

因此,zeroValue即确定了U的类型,也会对结果产生至关重要的影响,使用时候要特别注意。

 

fold

def fold(zeroValue: T)(op: (T, T) ⇒ T): T

fold是aggregate的简化,将aggregate中的seqOp和combOp使用同一个函数op。

scala> rdd1.fold(1)(
| (x,y) => x + y
| )
res19: Int = 58

##结果同上面使用aggregate的第一个例子一样,即:
scala> rdd1.aggregate(1)(
| {(x,y) => x + y},
| {(a,b) => a + b}
| )
res20: Int = 58



var rdd1 = sc.makeRDD(1 to 10,4)
rdd1.fold(3)(_+_)
res4: Int = 70

[(3+1+2+3)+(3+4+5+6)+(3+7+8)+(3+9)]+3 = 55+(4+1)*3 = 75 ;4+1是4个分区计算4次,每次加3;最后多个分区结果合并需要再加一次3


var rdd1 = sc.makeRDD(1 to 10,3)
rdd1.fold(5)(_+_)
res5: Int = 75 = 55+(3+1)*5

 

lookup

def lookup(key: K): Seq[V]

lookup用于(K,V)类型的RDD,指定K值,返回RDD中该K对应的所有V值。

scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at makeRDD at :21

scala> rdd1.lookup("A")
res0: Seq[Int] = WrappedArray(0, 2)

scala> rdd1.lookup("B")
res1: Seq[Int] = WrappedArray(1, 2)
转自:http://lxw1234.com/archives/2015/07/394.htm

-----

reduce/fold/aggregate 三个方法操作都是对RDD进行的聚合操作。

foldByKey与aggregateByKey,fold与aggregate用法相近,作用相似!
foldByKey是aggregateByKey的简化,fold是aggregate的简化。

1、reduce()与fold()方法是对同种元素类型数据的RDD进行操作,即必须同构。其返回值返回一个同样类型的新元素。

val nums = Array(1,2,3,4,5,6,7,8,9)
val numsRdd = sc.parallelize(nums,3)
val reduce = numsRdd.reduce((a,b) => a+b)
reduce: Int = 45

2、fold()与reduce()类似,接收与reduce接收的函数签名相同的函数,另外再加上一个初始值作为第一次调用的结果。(例如,加法初始值应为0,乘法初始值应为1)

val rdd = sc.makeRDD(List("a","a","b","b"),4)
val res = rdd.fold("")(_+_) //结果不固定
res: String = baab
或者
res: String = abba

具体案例请参考: Spark算子[10]:foldByKey、fold 源码实例详解

3、aggregate() 方法可以对两个不同类型的元素进行聚合,即支持异构。
它先聚合每一个分区里的元素,然后将所有结果返回回来,再用一个给定的conbine方法以及给定的初始值zero value进行聚合。

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页